References#
J. Hermann, Z. Schätzle, F. Noé, Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020).
D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Research 2, 033429 (2020).
L. Gerard, M. Scherbela, P. Marquetand, P. Grohs, Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need? Advances in Neural Information Processing Systems 35 10282-10294 (2022)
I. von Glehn, J. S. Spencer, D. Pfau, A self-attention ansatz for ab-initio quantum chemistry. arXiv:2211.13672 (2022).
Z. Schätzle, P. B. Szabó, M. Mezera, J. Hermann, F. Noé, DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions. Journal of Chemical Physics 159 (9), 094108 (2023).
M. Burkatzki, C. Filippi, and M. Dolg, Energy-consistent pseudopotentials for quantum Monte Carlo calculations. Journal of Chemical Physics 126, 234105 (2007)
M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L. Shulenburger, and L. Mitas, A new generation of effective core potentials for correlated calculations. Journal of Chemical Physics 147, 224106 (2017).
P. B. Szabó, Z. Schätzle, M. T. Entwistle, and F. Noé, An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes. Journal of Chemical Theory and Computation (2024).
M. T. Entwistle, Z. Schätzle, P. A. Erdman, J. Hermann, and F. Noé, Electronic excited states in deep variational Monte Carlo. Nature Communications (2023).