References#

[HermannNC20]

J. Hermann, Z. Schätzle, F. Noé, Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020).

[PfauPRR20]

D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Phys. Rev. Research 2, 033429 (2020).

[Gerard22]

L. Gerard, M. Scherbela, P. Marquetand, P. Grohs, Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need? Advances in Neural Information Processing Systems 35 10282-10294 (2022)

[Glehn22]

I. von Glehn, J. S. Spencer, D. Pfau, A self-attention ansatz for ab-initio quantum chemistry. arXiv:2211.13672 (2022).

[Schaetzle23]

Z. Schätzle, P. B. Szabó, M. Mezera, J. Hermann, F. Noé, DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions. Journal of Chemical Physics 159 (9), 094108 (2023).

[Burkatzki07]

M. Burkatzki, C. Filippi, and M. Dolg, Energy-consistent pseudopotentials for quantum Monte Carlo calculations. Journal of Chemical Physics 126, 234105 (2007)

[Bennett17]

M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L. Shulenburger, and L. Mitas, A new generation of effective core potentials for correlated calculations. Journal of Chemical Physics 147, 224106 (2017).

[Szabo24]

P. B. Szabó, Z. Schätzle, M. T. Entwistle, and F. Noé, An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes. Journal of Chemical Theory and Computation (2024).

[Entwistle23]

M. T. Entwistle, Z. Schätzle, P. A. Erdman, J. Hermann, and F. Noé, Electronic excited states in deep variational Monte Carlo. Nature Communications (2023).